

The SESAME project 1 [and 2]

John Erik Hagen

Regional Director

Norwegian Coastal Administration

– Vi tar ansvar for sjøvegen

What is the SESAME Straits project?

SESAME Straits -

<u>Secure</u>, <u>Efficient and</u> <u>SA</u>fe maritime traffic <u>ManagEment in the</u> <u>Straits</u> of Malacca and Singapore

Clear synergies between the MEH project and e-Navigation

- Vi tar ansvar for sjøvegen

A Project with 10 Work Packages

SESAME Straits - partners

 Project members: MPA, NCA, RCN, Vestfold University, Navtor, Marintek, SimPlus, KONGSBERG

• Country Agreement: Singapore/Norway R&D MoU

Project Owner: Kongsberg Norcontrol IT

28/03/2017

WORLD CLASS - through people, technology and dedication

- Vi tar ansvar for sjøvegen

SESAME Straits - objectives

The primary objective is to develop and validate shared situational awareness and cooperative decision making between ship's bridge team and shore based Vessel Traffic Service (VTS) personnel.

Secondary objectives are:

Just In Time arrival within a Regional Maritime Service Portfolio

Use existing systems/equipment as far as possible

SESAME Straits – existing systems today

Planning station

ARPA/ECDIS

VHF voice/AIS

C-Scope VTS with decision support

Shipping provided by International Chamber of Shipping (ICS)

C-Scope VTS system provided by the Maritime and Port Authority of Singapore (MPA)

28/03/2017

WORLD CLASS - through people, technology and dedication

Page 12

SESAME Straits – New systems

Cooperative decision support and shared situation awareness

Planning station

ARPA/ECDIS

Ship/Shore data communication

VHF voice/AIS

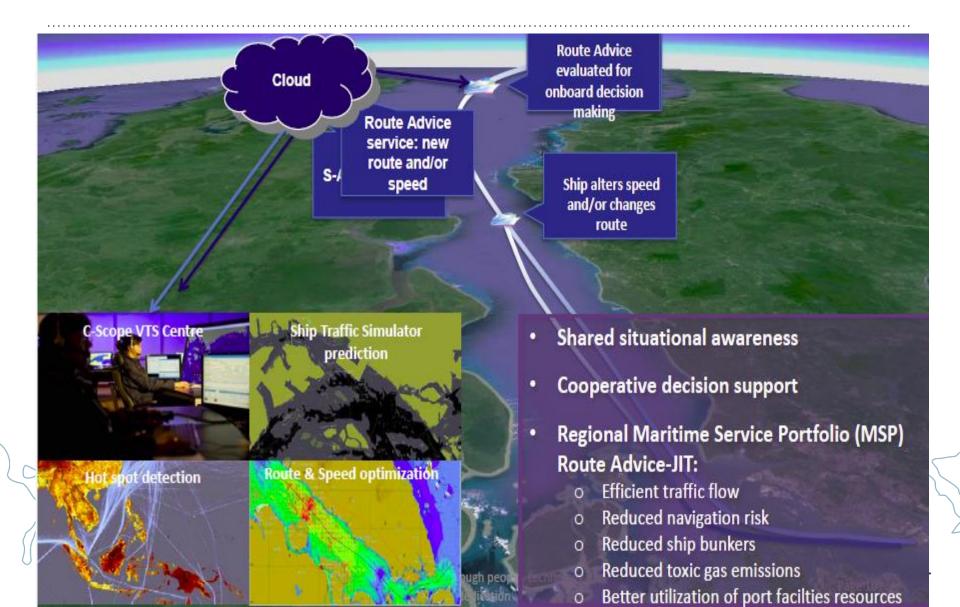
Cooperative decision support and shared situation awareness

C-Scope VTS with decision support

Shipping provided by International Chamber of Shipping (ICS)

C-Scope VTS system provided by the Maritime and Port Authority of Singapore (MPA)

28/03/2017


WORLD CLASS - through people, technology and dedication

Page 13

– Vi tar ansvar for sjøvegen

Operational Concept

Project Conclusions

- Three technology legs are necessary for e-Navigation: ship systems, shore-based systems, and communications systems. These three must work together in an integrated and harmonised way to exchange and present safety and security information for safe navigation of vessels, berth to berth. Therefore:
- The SESAME Straits project has demonstrated that the e-Navigation concept is viable. Information can be exchanged ship to shore using both VDES and a cloud solution.

The SESAME Straits e-Navigation test bed project

- Demonstrated that shared situational awareness and cooperative decision making between ship and shore is possible as a means of organizing vessel traffic in a Ship Traffic Management System (STMS).
- Demonstrated this by developing and testing at sea five demonstrators:
 - 1. Shore-based VTS system with a route monitor web client,
 - 2. Ship-based ECDIS,
 - 3. Ship-based planning station,
 - 4. Shore-based Ship Traffic Simulator, and
 - 5. VDES transponder

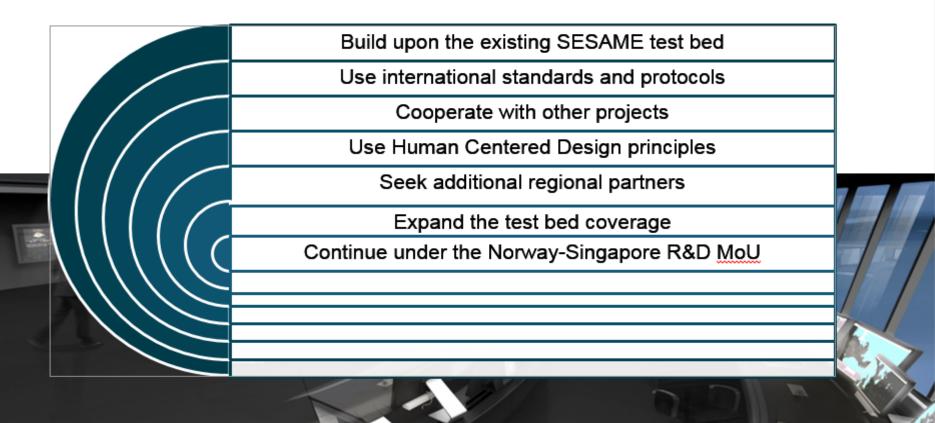
The Success

 The SESAME project demonstrated that predicting possible vessel traffic hot-spots in congested waterways is possible, and that new strategies to avoid such congestions can be used to improve safety and increase efficient traffic flow, enabling "Just-in-time" arrival of vessels, and reducing the environmental footprint.

– Vi tar ansvar for sjøvegen

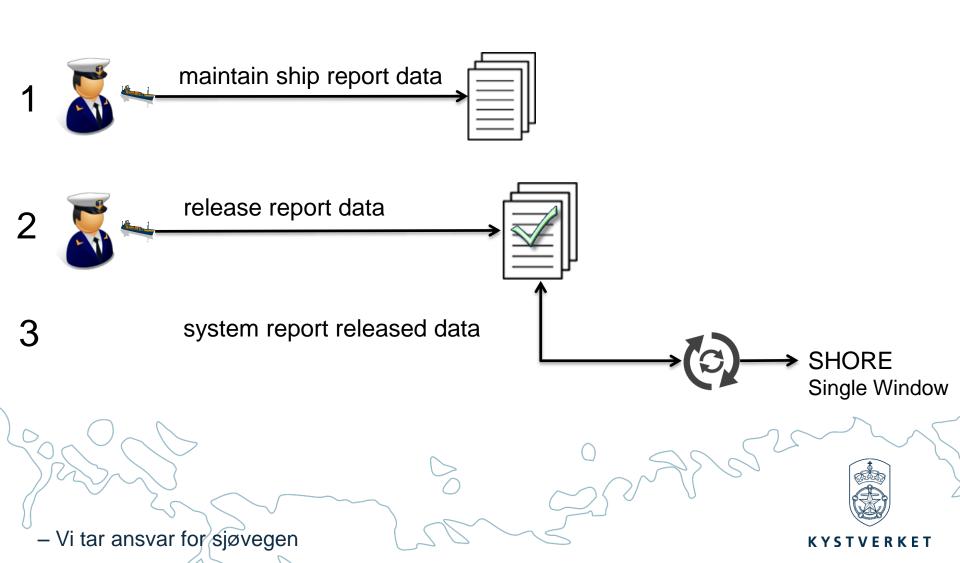
For more information

SESAME Straits Project
Final Report



[SESAME 2]

Guiding principles



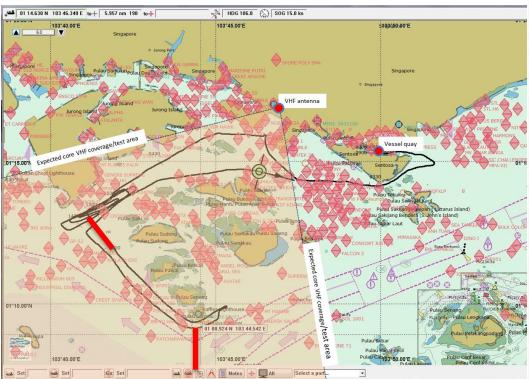
Background and ambition

- The e-navigation Strategy Implementation Plan (SIP)
- Strategy Implementation Plan for the five prioritized e-navigation solutions
 - S1: improved, harmonized and user-friendly bridge design;
 - S2: means for standardized and automated reporting;
 - S3: improved reliability, resilience and integrity of bridge equipment and navigation information;
 - S4: integration and presentation of available information in graphical displays received via communication equipment; and
 - S5: improved Communication of VTS Service Portfolio
- Proposal at NCSR (3/10 from Singapore, Norway and Brazil) to establish a testbed for automatic and standardised ship reporting (2016). A successful report about the trials was presented to IMO in 2017.

Automatic Reporting principle

Automatic Reporting, Singapore

- **Singapore** February 2017
 - 2nd generation HW/SW/concept
 - VDES and mobile communication
 - Ship²Shore



Trials 22nd February

	11:25 Pre	test 1 Mata Ikan	N_OK	poor coverage
	11:42 Pre	test 2 Mata Ikan	N_OK	poor coverage
	11:44 Pre	test 3 Mata Ikan	N_OK	poor coverage
	11:49 Pre	test 4 Mata Ikan	N_OK	poor coverage ?
	11:54 Pre	test 5 Mata Ikan	N_OK	
	11:56 Pre	test 5 Mata Ikan	OK	
	11:58 Pre	test 6 Mata Ikan	OK	
	12:00 Pre	test 7 Mata Ikan	OK	
٠	12:02 Pre	test 8 Mata Ikan	OK	(revised OK during debriefing)
Ī	12:04 Pre	test 8 Mata Ikan	OK	
-	12:10 Pre	test 9 Mata Ikan	OK	
	12:15 Pre	test 10 Mata Ikan	OK	
	12:20 Pre	test 11 Mata Ikan	OK	
	12:25 Pre	test 12 Mata Ikan	OK	
	12:30 Pre	test 13 Mata Ikan	OK	
	12:35 Pre	test 14 Mata Ikan	OK	
	12:40 Pre	test 15 Mata Ikan	N_OK	(unsure ?)
	12:40 Pre	test 15 Mata Ikan	OK	
	12:45 Pre	test 16 Mata Ikan	OK	
I.A	12:45 Pre	test 17 Mata Ikan	OK	by the line 1
		test Line 1 Mata		
1	12:50 AUT	Ikan	N_OK	no automatic trigger, Line, not Polygon
	13:10 Pre	test 18 Mata Ikan	OK	
	13:15 Pre	test 19 Mata Ikan	OK	
1	13:20 Pre	test 20 Mata Ikan	OK	
	40:00 D	test Line 2 Mata	OK	manual before line
ĬΜ	13:20 Pre	Ikan test Line 1 Mata	OK	manual before line
-	13:30 AUT	Ikan	N OK	no automatic trigger, Line, not Polygon
	10.007101	test Line 2 Mata	II_OIX	The date made ingger, Eme, not i enger
	13:35 Pre	lkan	OK	manual after line
6.		test Line 1 Mata		
	14:07 AUT	Ikan	OK	automatic, sailing North, Polygon, not Line
4		test Line 1 Mata		
	14:20 AUT	lkan	N_OK	no automatic trigger, no Timeout
d	14:37 AUT	test Line 1 Mata Ikan	N OK	no automatic trigger, no Timeout
7	14.57 A01	test Line 1 Mata	IV_OIX	no automatic trigger, no rimeout
3	14:xx AUT	Ikan	N_OK	no automatic trigger, no Timeout
	14:43 Pre	test 21 Mata Ikan	OK	around line 1
1				automatic, sailing South, after restart
	14:50 AUT	test Line 1 south	OK	service
	14:57 Pre	test 22 Mata Ikan	OK	around line 1
		test Line 1 Mata		automatic, sailing North, after restart
	15:01 AUT	Ikan	OK	service
			(

Results from the trials

Summary of the VDES results	
Overall success rate for reports in the testbed	
Overall (all reports submitted)	83,3 %
Manual submitted reports	84,3 %
Automatic submitted reports	80,0 %

– Vi tar ansvar for sjøvegen

First Satellitt with VDES to be tested during [SESAME 2]

Conclusions

- ✓ Results from the testbeds shows that Automatic Reporting is feasible and a part of the future
- Single Window central element when it comes to reporting
- ✓ Solutions such as VDES* will solve communications needs for Automatic Reporting
- Technical and operational concepts for reporting needs to be further explored and developed
- ✓ Focus on standards, harmonisation and security
- ✓ SESAME 1 is good platform for the development of [SESAME 2]

*along with other types of technology

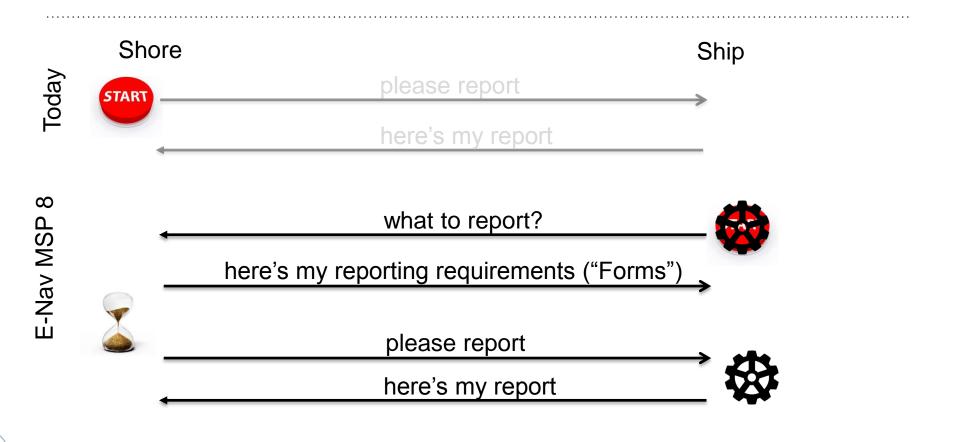
Vi tar ansvar for sjøvegen

Way forward of a [SESAME 2] project

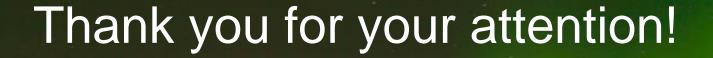
- Digitalization, Automation and Single Window
 - ✓ Further explore concepts for ship reporting
 - ✓ Use experience to further develop Automatic Reporting
 - √ Harmonisation
 - ✓ Integration
 - √ Test beds (full scale)

– Vi tar ansvar for sjøvegen

Way forward today has been....


Shore

please report


here's my report

– Vi tar ansvar for sjøvegen

Way forward tomorrow could be.....

Vi tar ansvar for sjøvegen

